# The volume change on mixing for the liquid methyl formate(1) + liquid

11.1. The volume change on mixing for the liquid methyl formate(1) + liquid ethanol(2) system at 298.15 K may be approximately represented by J. Polack, Lu, B.C.-Y. 1972. J. Chem Thermodynamics, 4:469: ∆Vmix = 0.8x1x2 cm3/mol a. Using this correlation, and the data V1 = 67.28 cm3 /mol, V2 = 58.68 cm3 /mol, determine the molar volume of mixtures at x1 = 0, 0.2, 0.4, 0.6, 0.8, 1.0 in cm3/mol. b. Analytically differentiate the above expression and show that and plot these partial molar excess volumes as a function of x1.

11.4. A stream containing equimolar methanol(1) + benzene(2) at 350 K and 1500 mmHg is to be adiabatically flashed to atmospheric pressure. The two-parameter Margules model is to be applied with A12 = 1.85, A21 = 1.64. Express all flash equations in terms of Ki values and Ki values in terms of Modified Raoult’s law. a. List all the unknown variables that need to be determined to solve for the outlet. b. List all the equations that apply to determine the unknown variables.

11.7. The excess Gibbs energy for a liquid mixture of n-hexane(1) + benzene(2) at 30°C is represented by GE = 1089 x1x2 J/mol. a. What is the bubble pressure for an equimolar mixture at 30°C? b. What is the dew pressure for an equimolar mixture at 30°C? c. What is the bubble temperature for an equimolar mixture at 760 mmHg? d. What is the dew temperature for an equimolar mixture at 760 mmHg?

11.15. The (1) + (2) system forms an azeotrope at x1 = 0.75 and 80°C. At 80°C, , . The liquid phase can be modeled by the one-parameter Margules equation. a. Estimate the activity coefficient of component 1 at x1 = 0.75 and 80°C. [Hint: The relative volatility (given in problem 11.2) is unity at the azeotropic condition.] b. Qualitatively sketch the P-x-y and T-x-y diagrams that you expect

11.21. Suppose a vessel contains an equimolar mixture of chloroform(1) and triethylamine(2) at 25°C. The following data are available at 25°C: a. If the pressure in the vessel is 90 mmHg, is the mixture a liquid, a vapor, or both liquid and vapor? Justify your answer. b. Provide your best estimate of the volume of the vessel under these conditions. State your assumptions.

## Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
\$26
The price is based on these factors:
Number of pages
Urgency
Basic features
• Free title page and bibliography
• Unlimited revisions
• Plagiarism-free guarantee
• Money-back guarantee
On-demand options
• Writer’s samples
• Part-by-part delivery
• Overnight delivery
• Copies of used sources
Paper format
• 275 words per page
• 12 pt Arial/Times New Roman
• Double line spacing
• Any citation style (APA, MLA, Chicago/Turabian, Harvard)

# Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

### Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

### Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

### Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.